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SUMMARY

Minimization of the variance of the slope maximized over all points in the design
region is taken as the optimality criterion. For spherical regions and second-
order models the performance of central composite rotatable designs under this
criterion is investigated. The number of centre points needed to maximize the
efficiency is derived.
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Introduction

Even in response surface designs the difference between responses at
two points may be more important than the response at individual loca-
tions (Huda and Mukerjee, [3]). If differences at adjacent points are
involved, estimation of the local slope of the response surface acquires
importance. Many researchers have taken up the problem of estimating
slope since the pioneering work by Atkinson [1]. Recently, Mukerjee and
Huda [4] introduced minimization of the variance of the estimated slope
maximized over all points in the design region as a criterion and derived
the optimal second- and third-order designs for spherical regions. The
optimal designs under this minimax criterion were found to belong to
the class of rotatable designs introdueed by Box and Hunter [2].

Unfortunately, the theoretically optimal designs are often not imple-
mentable, The mass distribution may have irrational weights which do
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not correspond to any discrete design. It is therefore important to study
the performance of discrete designs which the experimenter can actually
use. Central composite second-order rotatable designs are readily available
and often used in experimental work. In this paper we examine the per-
formance of these designs and determine the number of centre points
required to maximize the efficiency.

2. Variance of the Slope

Consider k quantitative factors x, , . . . , X taking values in a k-ball X
assumed, without loss of generally, to be of unit radius, i.e., X = {x =
(%1 . . . X#) : Z x2 < 1} and suppose that the response y(x) at point x
is given by the second-order polynomial

k
E{y(x)} = B + 2 51-’6{ + El El Buxix; = f'(x)B. (1)
= ]'_
Let the observations be uncorrelated, with a common variance which,
without loss of generality, is taken to be unity. '

A second-order dcsign £ is a probability measure on X which allows
estimation of all the parameters in (1) If N experiments are performed
in accordance with £ then N cov (B) M-1(E), where B is the least
squares estimator of § and M(§) =A[ f(x) f'(x) £(dx) is the information

matrix of £&. The vector of estimated slopes along the factor axes at point
x is given by

dp(R)ldx = (39(0)f3x1, . . ., 89(x)/ax)' where 3(x) = f'(x) b.
The vanance of the estimated slope averaged over all directions is

tr {cov (dy(x)/dx)} Let v(x) = N tr {cov (dy(x)/dx)} Then under the
minimax criterion the ob]ectlve_ 1s to

Min Max v(x)
£ xeX

In Mukerjee and Huda [4] it was shown that v(x) attains its maximum
when x is at the surface of X and that the optimal design is a rotatable
one. A second-order design & is rotatable if

_[ x2E(dx) = Ag, I xtE(dx) =3 I xIx2Edx) =3 (#j=1, , k),

and all other dcs1gn moments up to order four are zero. For a rotatable
design, it can be shown that the maximum value of v(x) is ’

v=kx\g" + {k(k + 3) A — (k — 1) (k + 2) A3} [A {(k
+ 2) A, — KA, (2
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which is minimized, as shown in Mukerjee and Huda [4], when
A=k +2)2 0 =k+2) ik + 2k + 4151 (3

In practice, we are always concerned with discrete designs for which
the weights are integer multiples of N-I. Thus, the optimal design
moments specified in (3) may not be achieved by implementable designs.
Therefore, it is of interest to know how well an implementable design
performs in comparison with the optimal design. As a measure of effici-
ency we take the ratio of the value of (2) for the optimal design to that
for the design under consideration.

3. Central Composite Rotatable Designs

A central composite design consists of the point-sets 2-2S (q, . . ., a),
88,0, ...,0)and n, replicates of the origin where S(x;, . . . , xx) denotes
all distinct permutations of (& xy, . .. , £ xz) and 27 S(x;, . .., Xz)
denotes any ‘Resolution ¥ 2-%th fraction of it. We shall consider only
the smallest such fractions. In order that a design be second-order rotat-
able, It is necessary to have b® = 2(t-»)/sa2 Further, to ensure that the
outermost -points of the design lie on the surface of the design region,
we need a® = [max {2%- /2, k}]-1, These give

Ay = {287 - 2U-24D)i8} @2)(2k-2 4 2k 4 p,), (4)
Ay = 277 a%/(2%-7) + 2k + n,).

Substituting (4) in (2), we obtain v as a function #,. Treating #, as a
continuous variable and differentiating v with respect to n, we obtain the
value of n, minimizing v given as a root of a simple quadratic equation
in n,. Since n, needs to be an integer, the best value of n, is given by one
of the pair closest to the root. As an example consider the case k = 4
where for the minimax design, using (2) and (3), we obtain v = 146.834.
For the central composite second-order rotatable design, f = 0, g* =
0.25, b* =1, A = 6/(24 + n,), v = 4(24 + n.) (3 + 2n,)/3n.. Clearly,
treating n, as continuous, v is minimized when n, = 34 2. Therefore, the
optimal integer value of n, is one of 4 or 5. Substituting these values of
ne in v it is found that the optimal n, is 4 when v = 177.333 and hence
the design has 82.8Y%; efficiency.

" The best values of #,, corresponding to efficiencies indicated by « are
given.in Table 1 for &£ = 2(1)10. , '

4. Discussion

Theoretically optimal designs are often unimplementable and usually
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TABLE 1—EFFICIENCY E OF CENTRAL COMPOSITE DESIGNS
k f a2 N n, E (percentage)
2 0 21 8+ n, 0 0
' 1 47.42

2 59.75
3 6268  *
4 62.24

3 0 3= 14 + n, 0 1.48
1 56.50
2 69.04
3 72.35
4 72.46 .
5 71.23

4 0 4 24 4 n, 0 0
1 62.93
2 77.01
3 81.57
4 82.80 hd
5 82.55

5 1 5-1 26 + n, 0 37.10
1 68.71
2 74.89
3 76.20 .
4 75.84

6 1 61 44 + n, 0 6.04
1 70.48
2 81.96
3 85.71
4 86.92
5 . 87.02 *
6 86.56

Table 1 (contd. on page 158)
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Table 1 (contd. from page 157)

ne E (Percentage)

2 81

2 2=712

80 + n.

146 + n,

0 24.99
58.81

[y

67.95
71.73
73.52
74.36
74.68
74.69 .

b - SV I S

8 74.50

0 0

=

74.40
86.17
90.32
92.05
92.72
92.83 *

N Y R WwWN

92.62

o

46.20
1 56.29
60.39
62.47
63.63
64.29
64.66
65.54 .
64.90

A W N

o 3 & w

Table 1 (contd. on page 159)




MINIMAX CENTRAL COMPOSITE DESIGNS 159

Table 1 (contd. from page 158)

k f a2 N ne E  (percentoge)
10 3 27702 148 + n, 0 34.63

1 64.07

2 "71.39

3 74.47

4 76.01

5 76.82

6 77.24

7 77.41

8 77.43 .

9 71.34

serve as guidelines. In order to have some idea about the performance of
discrete designs which can be implemented, these designs should be com-
pared with optimal designs. A given design, even if not optimal, may be
preferred to others if it has higher efficiency than the others.

In this paper we have studied the performance of central composite
second-order rotatable designs under the minimax criterion introduced in
Mukerjee and Huda {4]. For k = 2to k = 10 these designs seem to
perform reasonably well under our criterion and are known to perform
much better under the more usual criteria such as D-optimality. Very few
centre points are needed to reach the maximum efficiency. Near the
optimal value, there is little change in efficiency on variation of the num-
ber of centre points. In practice, the experimentor may use larger number
of centre points than that recommended by our findings, especially if he
is also concerned with other considerations like estimation of error vari-
ance with high precision.

Another class of second-order rotatable designs worth investigation
using the minimax eriterion is that consisting of designs derived through
balanced incomplete block designs. Work in that direction is currently
in progress.
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